
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016, pp. 448-451
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Current State of Research on
Self-healing Approach

Surbhi Khurana1 and Aashish Grover2
1IGDTUW, Delhi

2IIIT, Delhi
E-mail: 1surbhikhurana04@gmail.com, 2grover.aashish498@gmail.com

Abstract—Nowadays, computing system environments are intricate
and multiphase. Due to their competence of having heterogeneous
configuration they may escort to some erratic state. Extensive
research on designing domains and decision making techniques
enhances these systems with an autonomous behavior. The endeavor
of this survey, is to focus on the self healing approach from Self-*
properties of autonomic computing and to provide an overview of the
current existing approaches. In this survey we classify the need of
self-healing, self-healing systems fundamental principles, approaches
and autonomic computing tools.

1. INTRODUCTION

1.1. Autonomic systems
An autonomic system controls the functionality of computer
applications and systems with minimal or almost zero
dependency on user for inputs, in the same way, human body
nervous system regulates [1]. The goal of autonomic
computing is to create a system that run themselves, capable
of high-level functioning while keeping the system's
complexity invisible from the user. Hence, the fundamental
for autonomic computing includes four properties also known
as self * properties:

 Self-configuring: The capability of system to alter the
functionality of its components itself, during runtime.

 Self-healing: The capability of system to discover,
diagnose and recover from the breakdown to normal state.

 Self-optimization: The capability of system to maximize
its efficiency by altering the resource utilization in order
to meet the end-user need.

 Self-protection: The capability of system to sense,
recognize and protect itself from malicious codes.

1.2. Reliability

Reliability can be defined as a measure of trust and belief that,
the system will deliver the exact result which is expected from
it, regardless of any internal or external conditions, without
any deviation. Thus, the motivation behind introducing the
autonomic behaviour totraditional computing environment is,
to make the user, free from the task of discovering the system

failure and system recovery from unwanted state. Hence, the
objective is to increase the reliability of system. A self healed
system provide this functionality by discovering system faults
and hence, takes considerable steps to acquire a system from
ambiguous to unambiguous state without human intervention
[1].

1.3. Modularity

Traditionally computing systems were developed with an
intention to fulfill a specific set of requirements, which make
them simple and less complex. Now, the trend has been
shifted to diversifying the computing capabilities of a system,
by introducing modularity into system to amplify its
functionality. Thus, because of these heterogeneous
configurations, maintenance costs of the systems are
escalating hastily [2].This results to the increase in system
complexity [3].

2. SELF-HEALING IDEOLOGY

This segment focuses on the detailed ideology of self-healing
in systems. We begin with the definition of self-healing
systems and then, proceed with recognizing the different
phases of a self-healing in system.

2.1 An outline of self healing

IBM [1] points self healing, as one of the foremost property,
while defining an autonomic system as,

“a system which recovers from the ambiguous (or “faulty”)
condition to the normative or standard condition, without any
degradation in the functionality of other healthy modules”. [4]

Systems with self-healing technique might get confused with
fault-tolerant or survivable systems, as the expectation from
both the systems are alike. For the purpose of recovery, fault-
tolerant systems encompass various stabilizing technique and
replication strategies [5].

As a result, Ghosh et al. [6] divulge that, in some
circumstances fault-tolerant systems works as chief to self-

Current State of Research on Self-healing Approach 449

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016

healing systems. Whereas, survivable systems bulge wicked
actions and secure the “essential services”, a minimal set of
functionality like system configurations [6, 7].

System resource availability and its efficiency are the
foundation for enhancing a system with self-healing property.
With respect to transactional phase, self-healing techniques
takes the charge of low maintenance for the system. For
incessant work, it includes buoyancy against obligatory
adaptations and unpremeditated arbitrary behavior. Self-
healing execution works, by finding failure causes, in order to
derive a perfect solution and a sound strategy for recovery.
Additionally, some hardware like sensors and actuators are
also embedded for the accuracy, but the only constraint for
success, is the timely detection of system misbehavior. This
can be achieved by incessantly analyzing the sensed data as
well as observing the output of necessary adaptation deeds.

2.2 Self healing elements

Autonomic capacity of a system depends upon the working of
major elements of autonomic control loop. These are referred
as MAPE loop [1, 8]. This loop consists of a manager that
holds five distinct functions. These can be defined as follows:

 Monitor: It assembles the status information from the
system through the sensors.

 Analyse: It analyses the gathered data and verifies whether
the monitored information is pursuing the designated set of
actions or not.

Plan: A system behaves differently in different scenarios. So
a precise, accurate, and polished deployment of the actions is
required. This phase keep track of policies that must be
followed, to achieve the specified set of goals.
 Execute: It executes the parts of previously envisaged plans

on the managed elements.
 Knowledge: It represents the knowledge base consumed and

produced by all four previously mentioned tasks.
 These five autonomic processes are now reduced into three
main stages of a loop. Kephart and Chess [9] named these
stages as detection, diagnosis and repair. According to
Salehie and Tahvildari, [10] it can be considered as
integration of self-diagnosing and self-repairing with
discovery, diagnosing and reacting stages. Parashar and
Hariri [11] believe in the existence of only “detect” and
“recover” stage. According to Huebscher and McCann, [8]
the three main stages in the loop can be categorized into three
actions namely detect, diagnose, and fix. Taking into
consideration all of the above researches, we can say that
detection is the first phase of action.

2.3 Stages of Self healing

System robustness should never depend upon a single element.
Even if there is some failure then it must opt for graceful
degradation approach and the system as a whole should be
able to recover from the encountered failures [12].

 Ghosh et al. [6] suggests a model, featuring a fuzzy transition
zone describing an unclear “Degraded State”.
According to this concept, major super computers usually do
not immediately quit operations when smaller portions fail,
but continue to operate with a possible considerable loss on
performance. This provides enough amount of time to cure the
system and to bring the system back, without complete
disruption.
 The components of Ghosh et al. model can be described as
follows:
 Normal state: This state included the normal working of a

system
 Broken State: In this state the system becomes a dead

system
 Degraded state (fuzzy zone): This state includes the fault

detection phase

 The next issue observed is the state explosion; it can be
defined as a problem of large systems with many concurrent
processes, where the number of processes may cause the
number of possible states to grow exponentially. Clarke and
Grumberg [13] proposed a solution to handle the above stated
issue. They proposed a scheme where firstly all the states are
discovered which are sharing some common properties with
other states and after that a clustered set for the above states is
made.

2.4 Self healing policies

Policies defines boundary for the actions to be taken, in order
to cure the faulty system. Kephart and Walsh [14] in their
research proposed three different types of policies:
 Action Policies (Reaction): This is a type of policy that

defines all the set of actions to be taken on a certain fault;
however it is similar to an IF-THEN statement.

 Goal Policies (Routine): Here, the goal or desired state is
specified and after that the system takes necessary steps in
order to take the machine from the current sate to a specified
or desired state. Here, the routine level is defined to be the
one, where largely routine evaluation and planning
behaviours takes place.

 Utility Function Policies (Reflection): Utility function
policies attach a significance value to each possible state at
runtime, depending on the current state. Here, the results of
the problem are dependent on the information obtained from
its history, system capabilities, current system state, and
current environment state.

3. IMPLEMENTED APPROACHES

3.1 Embedded systems

Embedded systems works in a very different environment with
very limited hardware components or constrained
environment. Glass et al. states that, redundancy models (with
duplicate parts) must be dedicated to single resource for one
specific task, and suggests a check pointing approach. Failure

Surbhi Khurana and Aashish Grover

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016

450

detection can be done by exchanging a “keep alive” message
between a task and its clone called as shadow-task. Thus, the
shadow task is ready to take over, once the “keep alive”
message disappears and reconfiguration of the network is
initiated [15, 16].

3.2 Operating systems

In order to handle recovery, Herder et al. [17] in their paper
suggests two special types of server named as reincarnation
and data server. The reincarnation server is a master process
and is responsible for noticing slave thread fails. The data
server holds status of the slave threads and the master. For
each element, recovery policies are stored and the common
component replaces the fading application.

4. TYPES OF SYSTEMS

4.1 Intrusive and non-intrusive systems

 The aim of self healing systems is not only to recover from
ambiguous state but also to adept environmental changes to
make system more reliable.

Intrusive systems are adapted to support the self healing
extensions. There are various methods which are used for
attaining system awareness, support adaptations. It might
hinder with the original design and alter the timings of data
exchange and logic decisions. Apart from these disadvantages,
a buffed and firm guarded system can guarantee an optimal
integration in the time domain. Detection and Recovery
becomes more precise in such cases.

A non-intrusive alignment of self-healing techniques respects
the guarded system as a complete unit. It never interferes with
the functionality of other modules. In addition to this, it even
works and deploys as a single module itself which has the
capability of integrating with the original system. Adaptation
and monitoring are optional in this case. Even though, Non-
intrusive approach is the preferred way of integration,
however it is less applied because its efficiency depends fully
on the capabilities and characteristics of the supported system
with whom it is attached.

4.2 Closed vs. Open system

Stabilization is one of the necessary requirement and need of
any system. However, guaranteeing stability is an almost
impossible task in systems with volatile behavior. Therefore,
to neglect this behavior designers try to avoid the known
failure sources. Closed-loop implementation is adopted by
most of the self-healing approaches. Self-healing techniques
are usually aligned to systems to enhance the long term use.
Thus, some of the researched works introduce at least indirect
influence by allowing dynamic handling of policies.

4.3 Recovery techniques

Various recovery techniques are proposed to take out the
system from the state of failure. However, it may somehow be

redundant in itself. In hardware recovery self healing
implementations can be done by only spare parts duplicates or
additional resources, software recovery can also be done by
relocation of resources or services.

Various approaches that can be used are as follow:

 Replacement: This includes replacing the faulty parts.
Software rerun includes freeing the allocated resourced from
the faulty instance, and starting a fresh new application
instance.

 Balancing: This includes introducing extra resources or
killing some processes.

 Isolation: This includes cutting of a failing part of the
system.

 Persistence: It assumes no further degradation, and if faulty
modules wants to rejoin, then it must takes its own actions.

 Redirection: This includes navigating the data flow for new
routes.

 Relocation: This includes moving an application to a
different host i.e. re-directing.

 Diversity: This includes moving to a different approach to
solve the tasks once.

5. DIFFERENT TOOLS

In this section we have discussed some of the tools which can
be used for Windows as well as for UNIX operating system
for the fault detection purposes.

Tool or Service Use and Compatibility
Windows Event Viewer Windows
Window self monitoring tool Windows
Service.msc Windows
ABLE toolkit[18] UNIX
ABLE toolkit To increase Web server

performance[19]

6. CONCLUSION

Systems based upon autonomic computing would control the
functioning of computer applications, without taking input
from the user. The goal of autonomic computing is to create
systems that can run themselves and are capable of high-level
functioning while keeping the system's complexity invisible to
the user. This initiative ultimately aims to develop computer
systems capable of self-management, to overcome the rapidly
growing complexity of computing systems management, and
to reduce the barrier that complexity poses to further growth.
Now, the system makes decisions on its own, using high-level
policies. System will constantly check and optimize its status
and automatically adapt itself to changing conditions. In this
survey we discussed about various techniques and tools to
support self-healing, a property of autonomic computing.

Current State of Research on Self-healing Approach 451

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016

REFERENCES

[1] IBM, “An architectural blueprint for autonomic computing”, IBM,
4th edition, June 2006.

[2] Jeongmin P, Jinsoo J, Shunshan P and Eunseok L,“Self-healing
Mechanism for Reliable Computing”, International Journal of
Multimedia and Ubiquitous Engineering, vol. 3, issue. 1, 2008.

[3]Ganek AG and Corbi TA, “The dawning of the autonomic
computing era”, IBM, vol. 42, issue. 1, January 2003, pp. 5–18.

[4] Paul H “Autonomic computing: IBM’s Perspective on the State of
Information Technology”, 2001.

[5] Pierce W, “Failure-tolerant computer design”, Academic Press,
New York, 1965

[6] Ghosh D, Sharman R, Raghav Rao H and Upadhyaya S, “Self-
healing systems—survey and synthesis,Decision Support
Systems”, vol. 42, issue. 4, 2007, pp. 2164–2185.

[7]. Ellison R, Fisher D, Linger R, Lipson H, Longstaff T and Mead
N (1999) “Survivability: protecting your critical systems”, IEEE,
vol. 3, issue. 6, November/December 1999, pp. 55–63.

[8]Huebscher MC and McCann JA, “A survey of autonomic
computing—degrees, models, and applications”, ACM Computer
Security, vol. 40, issue. 3, 2008, pp. 1–28.

[9]Kephart JO and Chess DM, “The vision of autonomic computing”,
IEEE Computer Soc Press, vol. 36, issue. 1, 2003, pp. 41–50.

[10] Salehie M and Tahvildari L, “Self-adaptive software: landscape
and research challenges”, ACM Trans Auton Adapt System, vol. 4,
issue. 2, 2009, pp. 1–42.

[11] Parashar M and Hariri S, “Autonomic computing: an overview.
In: Unconventional programming paradigms”, Springer, Berlin,
2005, pp. 247–259.

[12] White S, Hanson J, Whalley I, Chess D and Kephart J, “An
architectural approach to autonomic computing”, In: Proceedings
international conference on autonomic computing, 2004, pp. 2–9.

[13] Clarke EM and Grumberg O, “Avoiding the state explosion
problem in temporal logic model checking”, In: PODC
Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing ACM, New York, 1987, pp. 294–303

[14] Kephart J and Walsh W, “An artificial intelligence perspective
on autonomic computing policies”, In: Proceedings fifth IEEE
international workshop on policies for distributed systems and
networks, POLICY, 2004, pp. 3–12.

[15] Glass M, Lukasiewycz M, Streichert T, Haubelt C and Teich J,
“Reliability-aware system synthesis. Design, Automation and
Test”, In Europe Conference & Exhibition, 2007, pp. 1–6.

[16] Glass M, Lukasiewycz M, Reimann F, Haubelt C and Teich J,
“Symbolic Reliability Analysis of Self-healing Networked
Embedded Systems”, In: SAFECOMP ’08: Proceedings of the
27th international conference on computer safety, reliability, and
security. Springer, Berlin, 2008, pp. 139–152.

 [17] Herder JN, Bos H, Gras B, Homburg P and Tanenbaum AS,
“MINIX 3: a highly reliable, self repairing operating system”,
SIGOPS OperSyst Rev, vol. 40, issue. 3, 2006, pp. 80–89

[18] Bigus JP et.al., “ABLE: a toolkit for building multiagent
autonomic systems,” IBM Systems J., vol. 41, issue. 3, 2002, pp.
350-371.

[19] Y.Diao, J. L. Hellerstein, S. Parekh and J. P. Bigus, “Managing
Web server performance with AutoTune agents”, IBM Systems
Journal, vol. 42, 2003.

